
STAT 209 – Generalized Linear Models (Fall 2019)

Homework 4 (due by 3pm, Monday December 9)

1. Consider a binary response (y = 0, 1) that corresponds to the choice between two options
(say, two product brands), a choice that can be explained by a covariate x. Let U0 denote
the utility of choice y = 0, and U1 the utility of choice y = 1. For y = 0, 1, suppose that
Uy = ay + byx + εy, using a scale such that εy follows a distribution in standard form.
(Assume that the coefficients a0, a1, b0 and b1 are all known.) A subject selects y = 1 if
U1 > U0 for that subject.
(a) If ε0 and ε1 are independent N(0, 1) random variables, show that Pr(Y = 1) satisfies
the probit regression model structure, and write the regression coefficients in terms of a0,
a1, b0 and b1.
(b) If ε0 and ε1 are independent random variables with c.d.f. F (ε) = exp{− exp(−ε)},
show that Pr(Y = 1) satisfies the logistic regression model structure (again, express the
regression coefficients in terms of a0, a1, b0 and b1).

2. Consider the “alligator food choice” data example, the full version of which is discussed
in Section 7.1 of Agresti (2002), Categorical Data Analysis, Second Edition. Here, con-
sider the subset of the data reported in Table 7.16 (page 304) of the above book. This
data set involves observations on the primary food choice for n = 63 alligators caught in
Lake George, Florida. The nominal response variable is the primary food type (in vol-
ume) found in each alligator’s stomach, with three categories: “fish”, “invertebrate”, and
“other”. The invertebrates were mainly apple snails, aquatic insects, and crayfish. The
“other” category included amphibian, mammal, bird, reptile, and plant material. Also
available for each alligator is covariate information on its length (in meters) and gender.

(a) Focus first on length as the single covariate to explain the response probabilities
for the “fish”, “invertebrate” and “other” food choice categories. Develop a Bayesian
multinomial regression model, using the baseline-category logits formulation with “fish”
as the baseline category, to estimate (with point and interval estimates) the response
probabilities as a function of length. (Note that in this data example, we have mi = 1,
for i = 1, ..., n.) Discuss your prior choice and approach to MCMC posterior simulation.

(b) Extend the model from part (a) to describe the effects of both length and gender
on food choice. Based on your proposed model, provide point and interval estimates for
the length-dependent response probabilities for male and female alligators.



3. The table below reports results from a developmental toxicity study involving ordinal
categorical outcomes. This study administered diethylene glycol dimethyl ether (an in-
dustrial solvent used in the manufacture of protective coatings) to pregnant mice. Each
mouse was exposed to one of five concentration levels for ten days early in the pregnancy
(with concentration 0 corresponding to controls). Two days later, the uterine contents of
the pregnant mice were examined for defects. One of three (ordered) outcomes (“Dead”,
“Malformation”, “Normal”) was recorded for each fetus.

Concentration Response Total number
(mg/kg per day) Dead Malformation Normal of subjects

(xi) (yi1) (yi2) (yi3) (mi)
0 15 1 281 297

62.5 17 0 225 242
125 22 7 283 312
250 38 59 202 299
500 144 132 9 285

Build a multinomial regression model for these data using continuation-ratio logits for the
response probabilities πj(x), j = 1, 2, 3, as a function of concentration level, x. Specifically,
consider the following model
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for the multinomial response probabilities πj ≡ πj(x), j = 1, 2, 3.

(a) Show that the model, involving the multinomial likelihood for the data = {(yi1, yi2, yi3, xi) :
i = 1, ..., 5}, can be fitted by fitting separately two Binomial GLMs. Provide details for
your argument, including the specific form of the Binomial GLMs.

(b) Use the result from part (a) to obtain the MLE estimates and corresponding stan-
dard errors for parameters (α1, α2, β1, β2). Plot the estimated response curves π̂j(x), for
j = 1, 2, 3, and discuss the results.

(c) Develop and implement a Bayesian version of the model above. Discuss your prior
choice, and provide details for the posterior simulation method. Provide point and interval
estimates for the response curves πj(x), for j = 1, 2, 3.



4. Consider the data set from homework 2, problem 3 on the incidence of faults in the
manufacturing of rolls of fabric:

http://www.stat.columbia.edu/~gelman/book/data/fabric.asc

where the first column contains the length of each roll (the covariate with values xi), and
the second contains the number of faults (the response with values yi and means µi).

(a) Fit a Bayesian Poisson GLM with the logarithmic link, log(µi) = β1 + β2xi.
Obtain the posterior distributions for β1 and β2 (under a flat prior for (β1, β2)), as well as
point and interval estimates for the response mean as a function of the covariate. Obtain
the distributions of the posterior predictive residuals, and use them for model checking.

(b) Develop a hierarchical extension of the Poisson GLM from part (a), using a gamma
distribution for the response means across roll lengths. Specifically, for the second stage of

the hierarchical model, assume that µi | γi, λ
ind.∼ gamma(λ, λγ−1

i ), a gamma distribution
with mean E(µi | γi, λ) = γi and variance Var(µi | γi, λ) = γ2i /λ, where log(γi) = β1+β2xi.

Derive the expressions for E(Yi | β1, β2, λ) and Var(Yi | β1, β2, λ), and compare them
with the corresponding expressions under the non-hierarchical model from part (a). De-
velop an MCMC method for posterior simulation providing details for all its steps. Derive
the expression for the posterior predictive distribution of a new (unobserved) response y0
corresponding to a specified covariate value x0, which is not included in the observed xi.
Implement the MCMC algorithm to obtain the posterior distributions for β1, β2 and λ, as
well as point and interval estimates for the response mean as a function of the covariate.
Discuss model checking results based on posterior predictive residuals.

Regarding the priors, you can use again the flat prior for (β1, β2), but perform prior
sensitivity analysis for λ considering different proper priors, including p(λ) = (λ+ 1)−2.

(c) Based on your results from parts (a) and (b), provide discussion on empirical com-
parison between the two models. Moreover, use the quadratic loss L measure for formal
comparison of the two models, in particular, to check if the hierarchical Poisson GLM
offers an improvement to the fit of the non-hierarchical GLM. Provide details on the
required expressions for computing the value of the model comparison criterion.


